Q Find the coordinates of the second focus and the equation of the second directrix of the ellipse whose one focu is $S(1,2)$ and corresponding directrix is $x-y=5$ and $e=\frac{1}{2}$.

Som The major axis through the focus $s(1,2) \perp$ to the directrix $x-y=5$
$(y-2)=m(x-1)$ is the eqn of line passing through $(1,2)$.

If it is to the line $x-y=5$

$$
m=-1
$$

Hence the egn of major axis is

$$
\begin{aligned}
& y-2=(-1)(x-1) \\
& \Rightarrow y+x=3
\end{aligned}
$$

Solving eqns (1) \& (2) we get the point of intersection of major axis and directrix

$$
\begin{aligned}
&(1)+(2) \Rightarrow 2 y=-2 \Rightarrow y=-1 \\
& \Rightarrow \text { Now } x+1=5 \Rightarrow x=4
\end{aligned}
$$

The required co-ordinates of the point x are ($4,-1$)
The vertices A_{1} and A divide the line $5 x$ internally \& externally in the ratio

$$
A: A_{1}=2: 1, A_{1}: A=1!2
$$

Hence $A_{1}=(2,1), A=(-2,1)$
The centre c is middle point of $A A$, with the co-ordinates. $(0,1)$.
If $S_{1}(\alpha, \beta)$ be the second focus and $C(0,1)$ be the middle point of $S S$,
then we already have $S=(1,2$)

$$
\begin{aligned}
\Rightarrow 0 & =\frac{\alpha+1}{2} \Rightarrow x=-1 \\
1 & =\frac{\beta+2}{2} \Rightarrow \beta=0
\end{aligned}
$$

Hence coordinates of S_{1} is $(-1,0)$
Also, C is centre of $X X_{1}$, therefore

$$
\begin{aligned}
& x_{1}=(h, k \cdot \\
& \Rightarrow 0=\frac{h+4}{2} \Rightarrow h=-4 \\
& \quad 1=\frac{k-1}{2} \Rightarrow k=3 \\
& \therefore \quad x_{1}=(-4,3)
\end{aligned}
$$

Now the directrix $M_{1} X_{1}$ is a line parallel to the given directrix $x-y=5$. and passes through the point $x_{1}(-4,3)$. Hence its equation is.

Focus is (a, b)
then egos of directrix $\Rightarrow x+a=y-b$

$$
\Rightarrow x-4=y-3 \Rightarrow x-y-7=0
$$

or $x-y=7$

5.1. DEFINITION

A hyperbola is the locus of a point which moves such that its distance from a fixed point bears a constant ratio (>1) to its distance from a fixed line. As before, the fixed point is called the focus, the fixed line, the directrix and the constant ratio is called the eccentricity.
The eccentricity ' e ' in the case of hyperbola is always >1.

5.2. EQUATION TO HYPERBOLA

Let S be the focus and $Z M$ the directrix. From S draw $S Z \perp Z M$ and divide $S Z$ internally at A and externally at A_{1} in the ratio e : 1 so that

$$
\frac{A S}{A Z}=\frac{A_{1} S}{A_{1} Z}=\frac{e}{1}
$$

Then by definition, A and A_{1} are points on the hyperbola.
Let $A A_{1}=2 a$ and let C be the middle point of $A A_{1}$.

$$
\begin{array}{ll}
\text { Then since } & A S=e A Z \\
\text { and } & A_{1} S=e A_{1} Z \\
\therefore & A S+A_{1} S=e\left(A Z+A_{1} Z\right) \\
\Rightarrow & (C S-C A)+\left(A_{1} C+C S\right)=e\left(C A-C Z+A_{1} C+C Z\right) \\
\Rightarrow & 2 C S=e A_{1} A=2 e a C S=a e . \\
\text { Also, } & A_{1} S-A S=e\left(A_{1} Z-A Z\right) \\
\Rightarrow & A_{1} A=e\left(\left(A_{1} C+C Z\right)-(A C-C Z)\right) \\
\Rightarrow & 2 a=e 2 C Z \\
\therefore & C Z=a / e .
\end{array}
$$

Take C as the origin and $C A X$ as the axis of x and a line $C Y \perp C A X$ as the axis of y. Therefore the co-ordinates of S are $(a e, 0)$ and the equation to the directrix is $x=a / e$.
Let $P(x, y)$ be any point on the hyperbola. Draw $P M \perp$ the directrix $Z M$.

Then by definition, $S P=e P M$
$\Rightarrow \quad S P^{2}=e^{2} P M^{2}=c^{2}(x-C Z)^{2}$
$\Rightarrow \quad(x-a e)^{2}+y^{2}=e^{2}(x-a / e)^{2}$
$\Rightarrow \quad x^{2}+y^{2}-2 a e x+a^{2} e^{2}=e^{2} x^{2}-2 a e x+a^{2}$
\Rightarrow
$\Rightarrow \quad \frac{x^{2}}{a^{2}}-\frac{y^{2}}{a^{2}\left(e^{2}-1\right)}=1$
Since $e>1, a^{2}\left(e^{2}-1\right)$ is positive; hence writing $b^{2}=a^{2}\left(c^{2}-1\right)$ the equation becomes

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1 \tag{1}
\end{equation*}
$$

which is the standard equation to the hyperbola.
We have seen in the case of the ellipse that it has second focus and a second directrix.

Here also if we take a point S_{1} on the x-axis, left of the origin C, such that $C S_{1}=C S=a e$ and another point Z_{1} such that $C Z_{1}=C Z=a / e$, it can be easily shown that the equation (1) still holds true and hence S_{1} is the second focus and $Z_{1} M_{1}$ a second directrix.

5.3. DEFINITIONS

The points A and A_{1} are called the vertices of the hyperbola and C its centre.
The line $A A_{1}$ is called the transverse axis.
If B and B_{1} be points on $O Y$ such that $O B=O B_{1}=b$, then $B B_{1}(=2 b)$ is called the conjugate axis.
The chord through the focus parallel to the directrix is called the latus rectum and its is not difficult to show that the length of the latus rectum (as in the case of ellipse) $=2 b^{2} / a$.

5.4. FORM OF THE CURVE

(i) Since the equation $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ contains only even powers of x and y, the curve (hyperbola) is symmetrical w.r.t. both the x-axis and the y-axis. If (x, y) be any point on the curve, then the point $(-x,-y)$ also lies on it. Therefore the centre C bisects every chord through it.
(ii) The curve cuts the x-axis in two points $x= \pm a$. This is obtained by putting $y=0$ in the equation of the hyperbola. The points A and A_{1} thus correspond to $x=a$ and $x=-a$ respectively. The curve cuts the y-axis at points whose ordinates are given by $y^{2}=-b^{2}$, that is, they are imaginary.

Hence the hyperbola meets the y-axis in imaginary points (i.e. it does not cut it)
(iii) Since $y^{2}=\frac{b^{2}}{a^{2}}\left(x^{2}-a^{2}\right)$ i.e. $y= \pm \frac{b}{a} \sqrt{x^{2}-a^{2}}$, it follows that for any value of x lying between $-a$ and $+a, y$ is imaginary, that is, no part of the limits. 1 is real.

Similarly by writing the equation in the form $x= \pm \frac{a}{b} \sqrt{y^{2}+b^{2}}$ we observe that for all real values of y positive or negative, x has a real value.
The curve will therefore, consist of two branches (symmetrical about the co-ordinate axes) each extending to infinity in two directions as shown in the figure.
(iv) Transforming the equation $\frac{x^{2}}{a^{2}}-\frac{v^{2}}{b^{2}}=1$ to polar co-ordinates, we have

$$
\begin{align*}
& \frac{r^{2} \cos ^{2} \theta}{a^{2}}-\frac{r^{2} \sin ^{2} \theta}{b^{2}}=1 \\
& \frac{1}{r^{2}}=\frac{\cos ^{2} \theta}{a^{2}}-\frac{\sin ^{2} \theta}{b^{2}}=\frac{\cos ^{2} \theta}{b^{2}}\left(\frac{b^{2}}{a^{2}}-\tan ^{2} \theta\right) \tag{1}
\end{align*}
$$

Therefore so long as $\tan ^{2} \theta<b^{2} / a^{2}$, the equation (1) gives two equal and opposite values of r corresponding to any value of θ.
When $\tan ^{2} \theta>\frac{b^{2}}{a^{2}}, \frac{1}{r^{2}}$ becomes negative, hence r is imaginary and therefore any radius drawn at an angle greater than $\tan ^{-1} \frac{b}{a}$ does not meet the hyperbola in any real points.
This shows that the hyperbola lies entirely between the two lines drawn from the centre, making angles $\pm \tan ^{-1} \frac{b}{a}$ with the x-axis.
When $\tan ^{2} \theta=\frac{b^{2}}{a^{2}}, r$ becomes infinite.

